209 research outputs found

    Seasonal variations of stable carbon isotopic composition and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest

    Get PDF
    To investigate the seasonal changes in biogenic water-soluble organic carbon (WSOC) aerosols in a boreal forest, aerosol samples were collected continuously in the canopy of a deciduous forest in northern Japan during 2009–2010. Stable carbon isotopic composition of WSOC (δ<sup>13</sup>C<sub>WSOC</sub>) in total suspended particulate matter (TSP) exhibited a distinct seasonal cycle, with lower values from June through September (−25.5±0.5 ‰). This cycle follows the net CO<sub>2</sub> exchange between the forest ecosystem and the atmosphere, indicating that δ<sup>13</sup>C<sub>WSOC</sub> likely reflects the biological activity at the forest site. WSOC concentrations showed the highest values in early summer and autumn. Positive matrix factorization (PMF) analysis indicated that the factor in which biogenic secondary organic aerosols (BSOAs) dominated accounted for ~40 % of the highest concentrations of WSOC, where BSOAs mostly consisted of α-/ÎČ-pinene SOA. In addition, primary biological aerosol particles (PBAPs) made similar contributions (~57 %) to the WSOC near the forest floor in early summer. This finding indicates that the production of both primary and secondary WSOC aerosols is important during the growing season in a deciduous forest. The methanesulfonic acid (MSA) maximum was also found in early summer and had a distinct vertical gradient with larger concentrations near the forest floor. Together with the similar vertical gradients found for WSOC and δ<sup>13</sup>C<sub>WSOC</sub> as well as the α-/ÎČ-pinene SOA tracers, our results indicate that the forest floor, including ground vegetation and soil, acts as a significant source of WSOC in TSP within a forest canopy at the study site

    Signal processing and frequency-dependent associative memory based on nanoswitches

    Get PDF
    A signal processing concept based on nanoscale switches whose conductance can be tuned by an external stimulus between two (ON and OFF) states is proposed and analyzed theoretically. The building block of the system is formed by a metal nanoparticle linked to two electrodes by an organic ligand and a molecular switch. When we apply an alternating potential to the system of the same frequency as the periodic variation between the ON and OFF states induced on the switch, the net charge delivered by the system exhibits a sharp resonance. This resonance can be used to process an external signal by selectively extracting the weight of the different harmonics. In addition, a frequency-dependent associative memory that exploits the resonance property is also demonstrated. The general properties of the signal processing concept that are required for practical implementation are analyzed for different temperatures, times, conductance ratios, applied potentials, and noise [email protected] [email protected]

    The influence of CeF₃ on radiation hardness and luminescence properties of Gd₂O₃–B₂O₃ glass scintillator

    Get PDF
    The effect of CeF3 concentration and γ-irradiation on the physical, optical and luminescence properties of Gd2O3–B2O3–CeF3 glasses were studied in this work. Before irradiation, the addition of CeF3 in glass degraded the network connectivity observed from FTIR and possibly created the non-bridging oxygen (NBO) in glass structure. This NBO caused the reduction of Ce3+/Ce4+ ratio in XANES, the red-shift in transmission spectra and the raise of refractive index with addition of CeF3 content. Such red-shift also was influenced by 4f–5d transition of Ce3+ dopant. This ion generated the strongest photoluminescence (PL) and radioluminescence (RL) in 0.3 mol% CeF3-doped glass with nanoseconds decay time. The irradiation with γ-rays damaged the glass structure, broke the chemical bonds, and created color center in the glass network. The non-bridging oxygen hole center (NBOHC), that absorbed photons in the visible light region, caused the darkening, color change and increment of refractive index. These irradiation effects on glass were mitigated by the addition of CeF3 that the electron donation of Ce3+ decreased the number of NBOHC. The Ce3+/Ce4+ ratio in most glasses after irradiation then reduced compared to them before irradiation, resulting to the decrease in PL and RL intensity. Our results confirm that CeF3 can enhance the radiation hardness of glass and the 0.3 mol% CeF3-doped glass is a promising glass scintillator.Kaewnuam E., Wantana N., Ruangtaweep Y., et al. The influence of CeF₃ on radiation hardness and luminescence properties of Gd₂O₃–B₂O₃ glass scintillator. Scientific Reports 12, 11059 (2022); https://doi.org/10.1038/s41598-022-14833-3

    Development and operational experience of magnetic horn system for T2K experiment

    Get PDF
    A magnetic horn system to be operated at a pulsed current of 320 kA and to survive high-power proton beam operation at 750 kW was developed for the T2K experiment. The first set of T2K magnetic horns was operated for over 12 million pulses during the four years of operation from 2010 to 2013, under a maximum beam power of 230 kW, and 6.63×10206.63\times10^{20} protons were exposed to the production target. No significant damage was observed throughout this period. This successful operation of the T2K magnetic horns led to the discovery of the ΜΌ→Μe\nu_{\mu}\rightarrow\nu_e oscillation phenomenon in 2013 by the T2K experiment. In this paper, details of the design, construction, and operation experience of the T2K magnetic horns are described.Comment: 22 pages, 40 figures, also submitted to Nuclear Instrument and Methods in Physics Research,

    GPIB ADDRESS CONVERTER

    Get PDF
    Abstract A GPIB address converter (GAC) has been constructed. This paper reports on the function and test results. The GAC has two GPIB connectors (upper and lower ports). The upper port has a GPIB primary address, and is connected to a GPIB system controller. The lower port acts as a GPIB controller of the lower side GPIB line. The GPIB system controller can access the lower side GPIB devices through the GAC by using an extended two-byte address function. The two-byte address (primary + secondary) is shown in the combination of the GAC address and the address of the lower side device. The GAC converts the secondary address into the primary address of the lower side GPIB device. By using of 30 GACs, the GPIB system controller can access 930 devices assigned only primary addresses

    The Hyper Suprime-Cam SSP Survey: Overview and Survey Design

    Full text link
    Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2m Subaru telescope on the summit of Maunakea in Hawaii. A team of scientists from Japan, Taiwan and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg2^2 in five broad bands (grizygrizy), with a 5 σ5\,\sigma point-source depth of r≈26r \approx 26. The Deep layer covers a total of 26~deg2^2 in four fields, going roughly a magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter still in two pointings of HSC (a total of 3.5 deg2^2). Here we describe the instrument, the science goals of the survey, and the survey strategy and data processing. This paper serves as an introduction to a special issue of the Publications of the Astronomical Society of Japan, which includes a large number of technical and scientific papers describing results from the early phases of this survey.Comment: 14 pages, 7 figures, 5 tables. Corrected for a typo in the coordinates of HSC-Wide spring equatorial field in Table
    • 

    corecore